The realization space is [1 1 0 2*x1^2 - 2*x1 + 1 0 1 1 0 4*x1^3 - 6*x1^2 + 4*x1 - 1 2*x1 - 1 1] [0 1 1 x1 0 0 1 x1 2*x1^2 - x1 x1 x1] [0 0 0 0 1 1 1 x1 - 1 2*x1^3 - 4*x1^2 + 3*x1 - 1 x1 - 1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-8*x1^7 + 26*x1^6 - 33*x1^5 + 21*x1^4 - 7*x1^3 + x1^2) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, 2*x1 - 1, 2*x1^2 - 2*x1 + 1, 2, 2*x1^3 - 6*x1^2 + 4*x1 - 1, 6*x1^3 - 8*x1^2 + 4*x1 - 1, 2*x1^3 - 2*x1 + 1, 6*x1^3 - 10*x1^2 + 6*x1 - 1, 2*x1^4 - 10*x1^3 + 12*x1^2 - 6*x1 + 1, 3*x1^2 - 3*x1 + 1]